Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
J Cell Mol Med ; 28(3): e18073, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063077

RESUMO

Diabetic kidney disease (DKD) can lead to accumulation of glucose upstream metabolites due to dysfunctional glycolysis. But the effects of accumulated glycolysis metabolites on podocytes in DKD remain unknown. The present study examined the effect of dihydroxyacetone phosphate (DHAP) on high glucose induced podocyte pyroptosis. By metabolomics, levels of DHAP, GAP, glucose-6-phosphate and fructose 1, 6-bisphosphate were significantly increased in glomeruli of db/db mice. Furthermore, the expression of LDHA and PKM2 were decreased. mRNA sequencing showed upregulation of pyroptosis-related genes (Nlrp3, Casp1, etc.). Targeted metabolomics demonstrated higher level of DHAP in HG-treated podocytes. In vitro, ALDOB expression in HG-treated podocytes was significantly increased. siALDOB-transfected podocytes showed less DHAP level, mTORC1 activation, reactive oxygen species (ROS) production, and pyroptosis, while overexpression of ALDOB had opposite effects. Furthermore, GAP had no effect on mTORC1 activation, and mTORC1 inhibitor rapamycin alleviated ROS production and pyroptosis in HG-stimulated podocytes. Our findings demonstrate that DHAP represents a critical metabolic product for pyroptosis in HG-stimulated podocytes through regulation of mTORC1 pathway. In addition, the results provide evidence that podocyte injury in DKD may be treated by reducing DHAP.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Podócitos/metabolismo , Fosfato de Di-Hidroxiacetona/metabolismo , Fosfato de Di-Hidroxiacetona/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Piroptose , Glucose/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Diabetes Mellitus/metabolismo
2.
Cell Signal ; 99: 110443, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35988808

RESUMO

Recent studies have reported that Angiotensin II (Ang II) contributes to podocyte injury by interfering with metabolism. Glycolysis is essential for podocytes and glycolysis abnormality is associated with glomerular injury in chronic kidney disease (CKD). Glycerol-3-phosphate (G-3-P) biosynthesis is a shunt pathway of glycolysis, in which cytosolic glycerol-3-phosphate dehydrogenase 1 (GPD1) catalyzes dihydroxyacetone phosphate (DHAP) to generate G-3-P in the presence of the NADH. G-3-P is not only a substrate in glycerophospholipids and glyceride synthesis but also can be oxidated by mitochondrial glycerol-3-phosphate dehydrogenase (GPD2) to regenerate DHAP in mitochondria. Since G-3-P biosynthesis links to glycolysis, mitochondrial metabolism and lipid synthesis, we speculate G-3-P biosynthesis abnormality is probably involved in podocyte injury. In this study, we demonstrated that Ang II upregulated GPD1 expression and increased G-3-P and glycerophospholipid syntheses in podocytes. GPD1 knockdown protected podocytes from Ang II-induced lipid accumulation and mitochondrial dysfunction. GPD1 overexpression exacerbated Ang II-induced podocyte injury. In addition, we proved that lipid accumulation and mitochondrial dysfunction were correlated with G-3-P content in podocytes. These results suggest that Ang II upregulates GPD1 and promotes G-3-P biosynthesis in podocytes, which promote lipid accumulation and mitochondrial dysfunction in podocytes.


Assuntos
Podócitos , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Fosfato de Di-Hidroxiacetona/metabolismo , Glicerídeos/metabolismo , Glicerol/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Glicerofosfolipídeos/metabolismo , Glicólise , Lipídeos , NAD/metabolismo , Fosfatos/metabolismo , Podócitos/metabolismo
3.
ACS Synth Biol ; 10(9): 2252-2265, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34478281

RESUMO

The field of metabolic engineering has yielded remarkable accomplishments in using cells to produce valuable molecules, and cell-free expression (CFE) systems have the potential to push the field even further. However, CFE systems still face some outstanding challenges, including endogenous metabolic activity that is poorly understood yet has a significant impact on CFE productivity. Here, we use metabolomics to characterize the temporal metabolic changes in CFE systems and their constituent components, including significant metabolic activity in central carbon and amino acid metabolism. We find that while changing the reaction starting state via lysate preincubation impacts protein production, it has a comparatively small impact on metabolic state. We also demonstrate that changes to lysate preparation have a larger effect on protein yield and temporal metabolic profiles, though general metabolic trends are conserved. Finally, while we improve protein production through targeted supplementation of metabolic enzymes, we show that the endogenous metabolic activity is fairly resilient to these enzymatic perturbations. Overall, this work highlights the robust nature of CFE reaction metabolism as well as the importance of understanding the complex interdependence of metabolites and proteins in CFE systems to guide optimization efforts.


Assuntos
Escherichia coli/genética , Engenharia Metabólica/métodos , Metaboloma , Sistema Livre de Células , Fosfato de Di-Hidroxiacetona/metabolismo , Proteínas de Escherichia coli/genética , Cromatografia Gasosa-Espectrometria de Massas , Glicólise/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Análise de Componente Principal
4.
Microb Cell Fact ; 20(1): 123, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187467

RESUMO

BACKGROUND: Klebsiella pneumoniae is a bacterium that can be used as producer for numerous chemicals. Glycerol can be catabolised by K. pneumoniae and dihydroxyacetone is an intermediate of this catabolism pathway. Here dihydroxyacetone and glycerol were produced from glucose by this bacterium based a redirected glycerol catabolism pathway. RESULTS: tpiA, encoding triosephosphate isomerase, was knocked out to block the further catabolism of dihydroxyacetone phosphate in the glycolysis. After overexpression of a Corynebacterium glutamicum dihydroxyacetone phosphate dephosphorylase (hdpA), the engineered strain produced remarkable levels of dihydroxyacetone (7.0 g/L) and glycerol (2.5 g/L) from glucose. Further increase in product formation were obtained by knocking out gapA encoding an iosenzyme of glyceraldehyde 3-phosphate dehydrogenase. There are two dihydroxyacetone kinases in K. pneumoniae. They were both disrupted to prevent an inefficient reaction cycle between dihydroxyacetone phosphate and dihydroxyacetone, and the resulting strains had a distinct improvement in dihydroxyacetone and glycerol production. pH 6.0 and low air supplement were identified as the optimal conditions for dihydroxyacetone and glycerol production by K, pneumoniae ΔtpiA-ΔDHAK-hdpA. In fed batch fermentation 23.9 g/L of dihydroxyacetone and 10.8 g/L of glycerol were produced after 91 h of cultivation, with the total conversion ratio of 0.97 mol/mol glucose. CONCLUSIONS: This study provides a novel and highly efficient way of dihydroxyacetone and glycerol production from glucose.


Assuntos
Di-Hidroxiacetona/metabolismo , Klebsiella pneumoniae/metabolismo , Fosfato de Di-Hidroxiacetona/metabolismo , Ácidos Difosfoglicéricos/metabolismo , Fermentação , Genes Bacterianos , Glucose/metabolismo , Gliceraldeído 3-Fosfato/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glicerol/metabolismo , Concentração de Íons de Hidrogênio , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/crescimento & desenvolvimento , Engenharia Metabólica , Redes e Vias Metabólicas , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Termodinâmica
5.
Nat Metab ; 3(6): 859-875, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34140692

RESUMO

Global histone acetylation varies with changes in the nutrient and cell cycle phases; however, the mechanisms connecting these variations are not fully understood. Herein, we report that nutrient-related and cell-cycle-regulated nuclear acetate regulates global histone acetylation. Histone deacetylation-generated acetate accumulates in the nucleus and induces histone hyperacetylation. The nuclear acetate levels were controlled by glycolytic enzyme triosephosphate isomerase 1 (TPI1). Cyclin-dependent kinase 2 (CDK2), which is phosphorylated and activated by nutrient-activated mTORC1, phosphorylates TPI1 Ser 117 and promotes nuclear translocation of TPI1, decreases nuclear dihydroxyacetone phosphate (DHAP) and induces nuclear acetate accumulation because DHAP scavenges acetate via the formation of 1-acetyl-DHAP. CDK2 accumulates in the cytosol during the late G1/S phases. Inactivation or blockade of nuclear translocation of TPI1 abrogates nutrient-dependent and cell-cycle-dependent global histone acetylation, chromatin condensation, gene transcription and DNA replication. These results identify the mechanism of maintaining global histone acetylation by nutrient and cell cycle signals.


Assuntos
Ciclo Celular/fisiologia , Núcleo Celular/metabolismo , Fosfato de Di-Hidroxiacetona/metabolismo , Histonas/metabolismo , Nutrientes/metabolismo , Transdução de Sinais , Acetatos/metabolismo , Acetilação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Replicação do DNA , Humanos , Fosforilação , Transcrição Gênica
6.
Environ Mol Mutagen ; 62(3): 185-202, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33496975

RESUMO

Dihydroxyacetone (DHA) is a three-carbon sugar that is the active ingredient in sunless tanning products and a by-product of electronic cigarette (e-cigarette) combustion. Increased use of sunless tanning products and e-cigarettes has elevated exposures to DHA through inhalation and absorption. Studies have confirmed that DHA is rapidly absorbed into cells and can enter into metabolic pathways following phosphorylation to dihydroxyacetone phosphate (DHAP), a product of fructose metabolism. Recent reports have suggested metabolic imbalance and cellular stress results from DHA exposures. However, the impact of elevated exposure to DHA on human health is currently under-investigated. We propose that exogenous exposures to DHA increase DHAP levels in cells and mimic fructose exposures to produce oxidative stress, mitochondrial dysfunction, and gene and protein expression changes. Here, we review cell line and animal model exposures to fructose to highlight similarities in the effects produced by exogenous exposures to DHA. Given the long-term health consequences of fructose exposure, this review emphasizes the pressing need to further examine DHA exposures from sunless tanning products and e-cigarettes.


Assuntos
Fosfato de Di-Hidroxiacetona/metabolismo , Di-Hidroxiacetona/toxicidade , Mitocôndrias/genética , Estresse Oxidativo/efeitos dos fármacos , Di-Hidroxiacetona/metabolismo , Frutose/toxicidade , Humanos , Redes e Vias Metabólicas/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Estresse Oxidativo/genética , Fosforilação
8.
Biochemistry ; 59(48): 4573-4580, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33231431

RESUMO

Non-typhoidal Salmonella are capable of colonizing livestock and humans, where they can progressively cause disease. Previously, a library of targeted single-gene deletion mutants of Salmonella enterica serotype Typhimurium was inoculated to ligated ileal loops in calves to identify genes under selection. Of those genes identified, a cluster of genes is related to carbohydrate metabolism and transportation. It is proposed that an incoming carbohydrate is first phosphorylated by a phosphoenolpyruvate-dependent phosphotransferase system. The metabolite is further phosphorylated by the kinase STM3781 and then cleaved by the aldolase STM3780. STM3780 is functionally annotated as a class II fructose-bisphosphate aldolase. The aldolase was purified to homogeneity, and its aldol condensation activity with a range of aldehydes was determined. In the condensation reaction, STM3780 was shown to catalyze the abstraction of the pro-S hydrogen from C3 of dihydroxyacetone and subsequent formation of a carbon-carbon bond with S stereochemistry at C3 and R stereochemistry at C4. The best aldehyde substrate was identified as l-threouronate. Surprisingly, STM3780 was also shown to catalyze the condensation of two molecules of dihydroxyacetone phosphate to form the branched carbohydrate dendroketose bisphosphate.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Genes Bacterianos , Salmonella typhimurium/enzimologia , Salmonella typhimurium/genética , Animais , Biocatálise , Metabolismo dos Carboidratos , Carboidratos/química , Bovinos , Doenças dos Bovinos/microbiologia , Medição da Troca de Deutério , Fosfato de Di-Hidroxiacetona/metabolismo , Humanos , Família Multigênica , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonelose Animal/microbiologia , Sorogrupo , Estereoisomerismo , Especificidade por Substrato
9.
Biophys Chem ; 258: 106330, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31981743

RESUMO

The glycolytic pathway is present in most organisms and represents a central part of the energy production mechanism in a cell. For a general understanding of glycolysis, the investigation from a thermodynamic point of view is essential and allows realising thermodynamic feasibility analyses under in vivo conditions. However, available literature standard Gibbs energies of reaction, ΔRg'0, are calculated using equilibrium-molality ratios Km', which might lead to a misinterpretation of the glycolytic pathway. It was the aim of this work to thermodynamically investigate the triosephosphate isomerase (TPI) reaction to provide new activity-based reaction data. In vitro equilibrium experiments were performed, and activity coefficients were predicted with the equation of state electrolyte PC-SAFT (ePC-SAFT). The combination of experimental concentrations and predicted activity coefficients yielded the thermodynamic equilibrium constant Ka and a new value for ΔRg'0(298.15 K, pH 7) = 7.1 ± 0.3 kJ mol­1. The availability of the new ΔRg'0 value allowed predicting influences of the reaction medium on the reaction equilibrium of the TPI reaction. In this work, influences of the initial substrate concentration, pH and Mg2+ concentration on the reaction equilibrium were investigated and a method is presented to predict these influences. The higher the substrate concentration and the higher the temperature, the stronger the reaction equilibrium is shifted on the product side. While the pH did not have a significant influence on the reaction equilibrium, Mg2+ yielded a shift of the reaction equilibrium to the substrate side. All these effects were predicted correctly with ePC-SAFT. Based on the ePC-SAFT predictions we concluded that a charge-reduction of the product by complexation of the product with Mg2+ was responsible for the strong influence of Mg2+ on the reaction equilibrium. Finally, the standard enthalpy of reaction of ΔRh'0(pH 7) = 18 ± 7 kJ mol­1 was determined with the equilibrium constants Ka at 298.15 K, 304.15 K and 310.15 K using the van 't Hoff equation.


Assuntos
Termodinâmica , Triose-Fosfato Isomerase/metabolismo , Fosfato de Di-Hidroxiacetona/química , Fosfato de Di-Hidroxiacetona/metabolismo , Magnésio/análise , Magnésio/metabolismo , Modelos Estatísticos
10.
Mol Microbiol ; 113(5): 923-937, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31950558

RESUMO

S-adenosyl-l-methionine (SAM) is a necessary cosubstrate for numerous essential enzymatic reactions including protein and nucleotide methylations, secondary metabolite synthesis and radical-mediated processes. Radical SAM enzymes produce 5'-deoxyadenosine, and SAM-dependent enzymes for polyamine, neurotransmitter and quorum sensing compound synthesis produce 5'-methylthioadenosine as by-products. Both are inhibitory and must be addressed by all cells. This work establishes a bifunctional oxygen-independent salvage pathway for 5'-deoxyadenosine and 5'-methylthioadenosine in both Rhodospirillum rubrum and Extraintestinal Pathogenic Escherichia coli. Homologous genes for this pathway are widespread in bacteria, notably pathogenic strains within several families. A phosphorylase (Rhodospirillum rubrum) or separate nucleoside and kinase (Escherichia coli) followed by an isomerase and aldolase sequentially function to salvage these two wasteful and inhibitory compounds into adenine, dihydroxyacetone phosphate and acetaldehyde or (2-methylthio)acetaldehyde during both aerobic and anaerobic growth. Both SAM by-products are metabolized with equal affinity during aerobic and anaerobic growth conditions, suggesting that the dual-purpose salvage pathway plays a central role in numerous environments, notably the human body during infection. Our newly discovered bifunctional oxygen-independent pathway, widespread in bacteria, salvages at least two by-products of SAM-dependent enzymes for carbon and sulfur salvage, contributing to cell growth.


Assuntos
Proteínas de Bactérias/metabolismo , Desoxiadenosinas/metabolismo , Escherichia coli/metabolismo , Rhodospirillum rubrum/metabolismo , S-Adenosilmetionina/metabolismo , Tionucleosídeos/metabolismo , Proteínas de Bactérias/genética , Carbono/metabolismo , Fosfato de Di-Hidroxiacetona/metabolismo , Escherichia coli/genética , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Isomerases/genética , Isomerases/metabolismo , Redes e Vias Metabólicas/genética , Metionina/metabolismo , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Oxigênio/metabolismo , Fosforilases/genética , Fosforilases/metabolismo , Fosfotransferases/genética , Fosfotransferases/metabolismo , Rhodospirillum rubrum/genética
11.
J Biol Chem ; 295(7): 1867-1878, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31871051

RESUMO

The genomes of most cellulolytic clostridia do not contain genes annotated as transaldolase. Therefore, for assimilating pentose sugars or for generating C5 precursors (such as ribose) during growth on other (non-C5) substrates, they must possess a pathway that connects pentose metabolism with the rest of metabolism. Here we provide evidence that for this connection cellulolytic clostridia rely on the sedoheptulose 1,7-bisphosphate (SBP) pathway, using pyrophosphate-dependent phosphofructokinase (PPi-PFK) instead of transaldolase. In this reversible pathway, PFK converts sedoheptulose 7-phosphate (S7P) to SBP, after which fructose-bisphosphate aldolase cleaves SBP into dihydroxyacetone phosphate and erythrose 4-phosphate. We show that PPi-PFKs of Clostridium thermosuccinogenes and Clostridium thermocellum indeed can convert S7P to SBP, and have similar affinities for S7P and the canonical substrate fructose 6-phosphate (F6P). By contrast, (ATP-dependent) PfkA of Escherichia coli, which does rely on transaldolase, had a very poor affinity for S7P. This indicates that the PPi-PFK of cellulolytic clostridia has evolved the use of S7P. We further show that C. thermosuccinogenes contains a significant SBP pool, an unusual metabolite that is elevated during growth on xylose, demonstrating its relevance for pentose assimilation. Last, we demonstrate that a second PFK of C. thermosuccinogenes that operates with ATP and GTP exhibits unusual kinetics toward F6P, as it appears to have an extremely high degree of cooperative binding, resulting in a virtual on/off switch for substrate concentrations near its K½ value. In summary, our results confirm the existence of an SBP pathway for pentose assimilation in cellulolytic clostridia.


Assuntos
Clostridiales/genética , Clostridium thermocellum/genética , Frutose-Bifosfato Aldolase/genética , Via de Pentose Fosfato/genética , Fosfofrutoquinase-1/genética , Clostridiales/enzimologia , Clostridium thermocellum/enzimologia , Fosfato de Di-Hidroxiacetona/genética , Fosfato de Di-Hidroxiacetona/metabolismo , Escherichia coli/enzimologia , Frutose-Bifosfato Aldolase/metabolismo , Frutosefosfatos/metabolismo , Cinética , Pentoses/biossíntese , Pentoses/metabolismo , Fosfofrutoquinase-1/metabolismo , Fosfotransferases/metabolismo , Ribose/biossíntese , Ribose/metabolismo , Fosfatos Açúcares/metabolismo , Transaldolase/genética , Transaldolase/metabolismo , Xilose/biossíntese , Xilose/metabolismo
12.
Plant J ; 102(1): 153-164, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31762135

RESUMO

Dunaliella has been extensively studied due to its intriguing adaptation to high salinity. Its di-domain glycerol-3-phosphate dehydrogenase (GPDH) isoform is likely to underlie the rapid production of the osmoprotectant glycerol. Here, we report the structure of the chimeric Dunaliella salina GPDH (DsGPDH) protein featuring a phosphoserine phosphatase-like domain fused to the canonical glycerol-3-phosphate (G3P) dehydrogenase domain. Biochemical assays confirm that DsGPDH can convert dihydroxyacetone phosphate (DHAP) directly to glycerol, whereas a separate phosphatase protein is required for this conversion process in most organisms. The structure of DsGPDH in complex with its substrate DHAP and co-factor nicotinamide adenine dinucleotide (NAD) allows the identification of the residues that form the active sites. Furthermore, the structure reveals an intriguing homotetramer form that likely contributes to the rapid biosynthesis of glycerol.


Assuntos
Clorofíceas/enzimologia , Fosfato de Di-Hidroxiacetona/metabolismo , Glicerol/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Domínio Catalítico , Clorofíceas/genética , Clorofíceas/metabolismo , Glicerolfosfato Desidrogenase/química , Glicerolfosfato Desidrogenase/genética , NAD/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência
13.
J Am Chem Soc ; 141(36): 14142-14151, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31390192

RESUMO

Quinolinic acid is a common intermediate in the biosynthesis of nicotinamide adenine dinucleotide and its derivatives in all organisms that synthesize the molecule de novo. In most prokaryotes, it is formed from the condensation of dihydroxyacetone phosphate (DHAP) and iminoaspartate (IA) by the action of quinolinate synthase (NadA). NadA contains a [4Fe-4S] cluster cofactor with a unique noncysteinyl-ligated iron ion (Fea), which is proposed to bind the hydroxyl group of an intermediate in its reaction to facilitate a dehydration step. However, direct evidence for this role in catalysis has yet to be provided, and the exact chemical mechanism that underlies this transformation remains elusive. Herein, we present a structure of NadA from Pyrococcus horikoshii (PhNadA) in complex with IA and show that a carboxylate group of the molecule is ligated to Fea of the iron-sulfur cluster, occupying the site to which DHAP has been proposed to bind during catalysis. When crystals of PhNadA in complex with IA are soaked briefly in DHAP before freezing, electron density for a new molecule is observed, which we suggest is related to an intermediate in the reaction. Similar, but slightly different, "intermediates" are observed when crystals of a PhNadA Glu198Gln variant are incubated with DHAP, oxaloacetate, and ammonium chloride, conditions under which IA is formed chemically. Continuous-wave and pulse electron paramagnetic resonance techniques are used to verify the binding mode of substrates and proposed intermediates in frozen solution.


Assuntos
Ácido Aspártico/análogos & derivados , Fosfato de Di-Hidroxiacetona/metabolismo , Complexos Multienzimáticos/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Biocatálise , Cristalografia por Raios X , Fosfato de Di-Hidroxiacetona/química , Modelos Moleculares , Estrutura Molecular , Complexos Multienzimáticos/química , Pyrococcus horikoshii/enzimologia
14.
J Phys Chem B ; 123(19): 4230-4241, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31013084

RESUMO

Triosephosphate isomerase (TIM) catalyzes the interconversion between dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (GAP) via an enediol(ate) intermediate. The active-site residue Glu165 serves as the catalytic base during catalysis. It abstracts a proton from C1 carbon of DHAP to form the reaction intermediate and donates a proton to C2 carbon of the intermediate to form product GAP. Our difference Fourier transform infrared spectroscopy studies on the yeast TIM (YeTIM)/phosphate complex revealed a C═O stretch band at 1706 cm-1 from the protonated Glu165 carboxyl group at pH 7.5, indicating that the p Ka of the catalytic base is increased by >3.0 pH units upon phosphate binding, and that the Glu165 carboxyl environment in the complex is still hydrophilic in spite of the increased p Ka. Hence, the results show that the binding of the phosphodianion group is part of the activation mechanism which involves the p Ka elevation of the catalytic base Glu165. The deprotonation kinetics of Glu165 in the µs to ms time range were determined via infrared (IR) T-jump studies on the YeTIM/phosphate and ("heavy enzyme") [U-13C,-15N]YeTIM/phosphate complexes. The slower deprotonation kinetics in the ms time scale is due to phosphate dissociation modulated by the loop motion, which slows down by enzyme mass increase to show a normal heavy enzyme kinetic isotope effect (KIE) ∼1.2 (i.e., slower rate in the heavy enzyme). The faster deprotonation kinetics in the tens of µs time scale is assigned to temperature-induced p Ka decrease, while phosphate is still bound, and it shows an inverse heavy enzyme KIE ∼0.89 (faster rate in the heavy enzyme). The IR static and T-jump spectroscopy provides atomic-level resolution of the catalytic mechanism because of its ability to directly observe the bond breaking/forming process.


Assuntos
Ácido Glutâmico/química , Prótons , Proteínas de Saccharomyces cerevisiae/metabolismo , Triose-Fosfato Isomerase/metabolismo , Sequência de Aminoácidos , Bactérias , Sequência de Bases , Catálise , Domínio Catalítico , Fosfato de Di-Hidroxiacetona/metabolismo , Humanos , Cinética , Fosfatos/metabolismo , Planctomycetales/enzimologia , Ligação Proteica , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Triose-Fosfato Isomerase/química
15.
Plant Physiol ; 180(2): 783-792, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30886114

RESUMO

The oxygenation of ribulose 1,5-bisphosphate by Rubisco is the first step in photorespiration and reduces the efficiency of photosynthesis in C3 plants. Our recent data indicate that mutants in photorespiration have increased rates of photosynthetic cyclic electron flow around photosystem I. We investigated mutant lines lacking peroxisomal hydroxypyruvate reductase to determine if there are connections between 2-phosphoglycolate accumulation and cyclic electron flow in Arabidopsis (Arabidopsis thaliana). We found that 2-phosphoglycolate is a competitive inhibitor of triose phosphate isomerase, an enzyme in the Calvin-Benson cycle that converts glyceraldehyde 3-phosphate to dihydroxyacetone phosphate. This block in metabolism could be overcome if glyceraldehyde 3-phosphate is exported to the cytosol, where cytosolic triose phosphate isomerase could convert it to dihydroxyacetone phosphate. We found evidence that carbon is reimported as glucose-6-phosphate, forming a cytosolic bypass around the block of stromal triose phosphate isomerase. However, this also stimulates a glucose-6-phosphate shunt, which consumes ATP, which can be compensated by higher rates of cyclic electron flow.


Assuntos
Citosol/metabolismo , Glucose-6-Fosfato/metabolismo , Hidroxipiruvato Redutase/metabolismo , Peroxissomos/enzimologia , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Fosfato de Di-Hidroxiacetona/metabolismo , Transporte de Elétrons , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gliceraldeído 3-Fosfato/metabolismo , Glicolatos , Cinética , Modelos Biológicos , Mutação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Triose-Fosfato Isomerase/metabolismo
16.
ACS Synth Biol ; 8(3): 548-556, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30781944

RESUMO

2-Amino-1,3-propanediol (2-APD) is a chemical building block for the production of various value-added pharmaceuticals. However, the current manufacture of 2-APD predominantly relies on chemical processes by utilizing fossil fuel-derived and highly explosive raw materials. Herein, we established an artificial biosynthetic pathway for converting glucose to 2-APD in a metabolically engineered Escherichia coli. This artificial pathway employs an engineered heterogeneous aminotransferase RtxA for diverting dihydroxyacetone phosphate to generate 2-APD phosphate and an endogenous phosphatase for converting it into the target product 2-APD. Through fine-tuning the activity and solubility of RtxA for efficiently extending the glycolysis pathway, enhancing the metabolic recycling of amino-containing substrate supply via nitrogen-borrowing, and unlocking the dephosphorylation involved in the downstream pathway, the best metabolically engineered E. coli strain LYC-5 was constructed stepwise. Under aerobic conditions, a fed-batch fermentation of the strain LYC-5 produced 14.6 g/L 2-APD with a productivity of 0.122 g/L/h in a 6-L bioreactor, which was the highest reported titer to the best of our knowledge. This work demonstrates the great potential to provide an environmentally friendly and efficient approach for 2-APD production.


Assuntos
Vias Biossintéticas/genética , Escherichia coli/genética , Engenharia Metabólica/métodos , Propanolaminas/metabolismo , Propilenoglicóis/metabolismo , Reatores Biológicos/microbiologia , Fosfato de Di-Hidroxiacetona/metabolismo , Composição de Medicamentos , Fermentação , Combustíveis Fósseis , Glucose/metabolismo , Glicólise , Monoéster Fosfórico Hidrolases/metabolismo , Engenharia de Proteínas , Solubilidade , Transaminases/metabolismo
17.
Biochemistry ; 58(8): 1061-1073, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30640445

RESUMO

Human liver glycerol 3-phosphate dehydrogenase ( hlGPDH) catalyzes the reduction of dihydroxyacetone phosphate (DHAP) to form glycerol 3-phosphate, using the binding energy associated with the nonreacting phosphodianion of the substrate to properly orient the enzyme-substrate complex within the active site. Herein, we report the crystal structures for unliganded, binary E·NAD, and ternary E·NAD·DHAP complexes of wild type hlGPDH, illustrating a new position of DHAP, and probe the kinetics of multiple mutant enzymes with natural and truncated substrates. Mutation of Lys120, which is positioned to donate a proton to the carbonyl of DHAP, results in similar increases in the activation barrier to hlGPDH-catlyzed reduction of DHAP and to phosphite dianion-activated reduction of glycolaldehyde, illustrating that these transition states show similar interactions with the cationic K120 side chain. The K120A mutation results in a 5.3 kcal/mol transition state destabilization, and 3.0 kcal/mol of the lost transition state stabilization is rescued by 1.0 M ethylammonium cation. The 6.5 kcal/mol increase in the activation barrier observed for the D260G mutant hlGPDH-catalyzed reaction represents a 3.5 kcal/mol weakening of transition state stabilization by the K120A side chain and a 3.0 kcal/mol weakening of the interactions with other residues. The interactions, at the enzyme active site, between the K120 side chain and the Q295 and R269 side chains were likewise examined by double-mutant analyses. These results provide strong evidence that the enzyme rate acceleration is due mainly or exclusively to transition state stabilization by electrostatic interactions with polar amino acid side chains.


Assuntos
Fosfato de Di-Hidroxiacetona/metabolismo , Glicerolfosfato Desidrogenase/química , Glicerolfosfato Desidrogenase/metabolismo , Glicerofosfatos/metabolismo , Fígado/enzimologia , Mutação , Domínio Catalítico , Cristalografia por Raios X , Glicerolfosfato Desidrogenase/genética , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Especificidade por Substrato
18.
Curr Protein Pept Sci ; 20(4): 304-315, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30370845

RESUMO

Triosephosphate isomerase is the fifth enzyme in glycolysis and its canonical function is the reversible isomerization of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. Within the last decade multiple other functions, that may not necessarily always involve catalysis, have been described. These include variations in the degree of its expression in many types of cancer and participation in the regulation of the cell cycle. Triosephosphate isomerase may function as an auto-antigen and in the evasion of the immune response, as a factor of virulence of some organisms, and also as an important allergen, mainly in a variety of seafoods. It is an important factor to consider in the cryopreservation of semen and seems to play a major role in some aspects of the development of Alzheimer's disease. It also seems to be responsible for neurodegenerative alterations in a few cases of human triosephosphate isomerase deficiency. Thus, triosephosphate isomerase is an excellent example of a moonlighting protein.


Assuntos
Anemia Hemolítica Congênita não Esferocítica/veterinária , Doenças dos Animais/enzimologia , Erros Inatos do Metabolismo dos Carboidratos/veterinária , Triose-Fosfato Isomerase/deficiência , Triose-Fosfato Isomerase/metabolismo , Anemia Hemolítica Congênita não Esferocítica/tratamento farmacológico , Anemia Hemolítica Congênita não Esferocítica/metabolismo , Doenças dos Animais/tratamento farmacológico , Animais , Erros Inatos do Metabolismo dos Carboidratos/tratamento farmacológico , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Fosfato de Di-Hidroxiacetona/metabolismo , Gliceraldeído 3-Fosfato/metabolismo , Glicólise , Humanos
19.
mBio ; 9(2)2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636438

RESUMO

5'-Methyl-thioadenosine (MTA) is a dead-end, sulfur-containing metabolite and cellular inhibitor that arises from S-adenosyl-l-methionine-dependent reactions. Recent studies have indicated that there are diverse bacterial methionine salvage pathways (MSPs) for MTA detoxification and sulfur salvage. Here, via a combination of gene deletions and directed metabolite detection studies, we report that under aerobic conditions the facultatively anaerobic bacterium Rhodopseudomonas palustris employs both an MTA-isoprenoid shunt identical to that previously described in Rhodospirillum rubrum and a second novel MSP, both of which generate a methanethiol intermediate. The additional R. palustris aerobic MSP, a dihydroxyacetone phosphate (DHAP)-methanethiol shunt, initially converts MTA to 2-(methylthio)ethanol and DHAP. This is identical to the initial steps of the recently reported anaerobic ethylene-forming MSP, the DHAP-ethylene shunt. The aerobic DHAP-methanethiol shunt then further metabolizes 2-(methylthio)ethanol to methanethiol, which can be directly utilized by O-acetyl-l-homoserine sulfhydrylase to regenerate methionine. This is in contrast to the anaerobic DHAP-ethylene shunt, which metabolizes 2-(methylthio)ethanol to ethylene and an unknown organo-sulfur intermediate, revealing functional diversity in MSPs utilizing a 2-(methylthio)ethanol intermediate. When MTA was fed to aerobically growing cells, the rate of volatile methanethiol release was constant irrespective of the presence of sulfate, suggesting a general housekeeping function for these MSPs up through the methanethiol production step. Methanethiol and dimethyl sulfide (DMS), two of the most important compounds of the global sulfur cycle, appear to arise not only from marine ecosystems but from terrestrial ones as well. These results reveal a possible route by which methanethiol might be biologically produced in soil and freshwater environments.IMPORTANCE Biologically available sulfur is often limiting in the environment. Therefore, many organisms have developed methionine salvage pathways (MSPs) to recycle sulfur-containing by-products back into the amino acid methionine. The metabolically versatile bacterium Rhodopseudomonas palustris is unusual in that it possesses two RuBisCOs and two RuBisCO-like proteins. While RuBisCO primarily serves as the carbon fixation enzyme of the Calvin cycle, RuBisCOs and certain RuBisCO-like proteins have also been shown to function in methionine salvage. This work establishes that only one of the R. palustris RuBisCO-like proteins functions as part of an MSP. Moreover, in the presence of oxygen, to salvage sulfur, R. palustris employs two pathways, both of which result in production of volatile methanethiol, a key compound of the global sulfur cycle. When total available sulfur was plentiful, methanethiol was readily released into the environment. However, when sulfur became limiting, methanethiol release decreased, presumably due to methanethiol utilization to regenerate needed methionine.


Assuntos
Desoxiadenosinas/metabolismo , Redes e Vias Metabólicas , Metionina/metabolismo , Rodopseudomonas/metabolismo , Compostos de Sulfidrila/metabolismo , Tionucleosídeos/metabolismo , Aerobiose , Fosfato de Di-Hidroxiacetona/metabolismo , Deleção de Genes , Rodopseudomonas/genética , Sulfetos/metabolismo
20.
Angew Chem Int Ed Engl ; 57(19): 5467-5471, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29542859

RESUMO

Dihydroxyacetone phosphate (DHAP)-dependent rhamnulose aldolases display an unprecedented versatility for ketones as electrophile substrates. We selected and characterized a rhamnulose aldolase from Bacteroides thetaiotaomicron (RhuABthet) to provide a proof of concept. DHAP was added as a nucleophile to several α-hydroxylated ketones used as electrophiles. This aldol addition was stereoselective and produced branched-chain monosaccharide adducts with a tertiary alcohol moiety. Several aldols were readily obtained in good to excellent yields (from 76 to 95 %). These results contradict the general view that aldehydes are the only electrophile substrates for DHAP-dependent aldolases and provide a new C-C bond-forming enzyme for stereoselective synthesis of tertiary alcohols.


Assuntos
Aldeído Liases/metabolismo , Fosfato de Di-Hidroxiacetona/metabolismo , Cetonas/metabolismo , Açúcares/metabolismo , Aldeído Liases/química , Bacteroides thetaiotaomicron/enzimologia , Fosfato de Di-Hidroxiacetona/química , Cetonas/química , Estrutura Molecular , Estereoisomerismo , Especificidade por Substrato , Açúcares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...